
11. Yu. S. Shoitov and N. F. Otpushchennikov, "The dependence of the velocity of sound in 
liquids on the pressure," Uch. Zap. Kursk. Pedagog. Inst., Voi. 71. Ultrasound and the 
Physical-Chemical Properties of Materials. Fourth Issue, Kurstk (1970), pp. 50-55~ 

12. Yu. S. Shoitov~ G. M. Panchenkov, and N. F. Otpushchennikov, "The velocity of sound 
and certain thermodynamic properties of m-xylol at pressures up to 500 bar," Teplo- 
energetika, No. 10, 76-78 (1968). 

13. A. M. Mamedov, T. S. Akhundov, and A. D. Tairov, "Experimental investigation of the 
viscosity of xylol at high pressures and temperatures," Tr. Inst. Probl. Glub. Neft. 
Mestorozh. Akad. Na1~ AzSSR (1975), pp. 225-227. 

]4. T. S. Akhundov, "Experimental investigation of the thermal conductivity of benzene," 
Izv. Vyssh. Uchebn. Zaved., Neft Gaz, No. 2, 78-79 (]974). 

]5. A. M. Mamedov et al., "The viscosity of benzene," Izv. Vyssh. Uchebn. Zaved., Neft Gaz, 
No. 2, 74-76 ( 1 9 7 ] ) .  

16. T. S. Akhundov and N. ~. Gasanova, "Experimental investigation of the thermal conducti- 
vity of o- and m-xylene," Izv. Vyssh. Uchebn. Zaved., Neft Gaz, No. ]I, 67-69 (1969). 

EFFECTIVE THE~iAL CONDUCTIVITY COEFFICIENTS OF A 

GRAINY ~DIUM 

V. T. Golovchan UDC 536.24 

An exact solution is presented for the problem of determination of effective 
thermal conductivity coefficients of a composite medium with regularly spaced 
spherical grains. 

I. The grainy layer considered consists of an isotropic matrix and spherical grains of 
radius R, the centers of which form a three-dimensional orthogonal lattice with periods a, 
b, and c. We denote by 11 and 12 the thermal conductivities of the matrix and grain mate- 
rials. We introduce a Cartesian coordinate system x, y, z such that its origin coincides 
with the center of one grain, and the coordinates of the center Opqs of an arbitrary pqs-th 
grain are pa, qb, sc (where p, q, s = O, 91, _+2, ...). We denote the temperature field with- 
in the matrix by T(x, y, z), and within the pqs-th grain by Tpqs(rpqs, 8pqs, CPpqs). Here 
rpqs, Opqs, qDpqs are spherical coordinates corresponding to the above Cartesian system and 
Xpqs = x- p~, Ypqs = Y -- qb, Zpqs = z -- sc(xooo = x, Yo0o --- y, Zooo - z). 

The problem consists of integrating the Laplace equation 

m = o  (~) 

at t = T in the volume outside the grains and t = Tpqs in the region occupied by the pqs-th 
grain under the condition of ideal thermal contact between matrix and grains: 

a a 
T : T p q  8, ~ i - -  T : ~ ,  Tpq~; rvq ~ : R .  (2) 

Orpqs Ofpqs 
We w i l l  f i r s t  d e t e r m i n e  the  e f f e c t i v e  t he rma l  c o n d u c t i v i t y  o f  the  g r a i n y  l a y e r  i n  the  

z d i r e c t i o n .  

The e s s e n c e  o f  the  method to be employed i s  the  c o n s t r u c t i o n  o f  an e x p l i c i t  e x p r e s s i o n  
f o r  the  t e m p e r a t u r e  T(x ,  y ,  z) i n  a l a y e r  o f  t h i c k n e s s  c ,  s e l e c t e d  from the  g r a i n y  medium. 
The f a c e s  o f  t h i s  l a y e r  a r e  p e r p e n d i c u l a r  to  the  z a x i s ,  and i t  c o n t a i n s  a d o u b l e - p e r i o d  
s y s t e m  o f  g r a i n s  w i t h  i n d i c e s  pqO. The upper  f a c e  i s  removed f rom the  p l a n e  xy by a d i s -  
t a n c e  h l ,  and t he  l o w e r ,  by a d i s t a n c e  h=,  so t h a t  h l  + h2 = e and hl~ h2 > R. 

We write the temperature field within the layer in the form 

T=yz4f-Tl (x ,  y, z), (3) 

where TI is a periodic function of arguments x and y with periods a and b, respectively, 
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and y is some constant. We require that solution (3) satisfy the following conditions: 

a 
0 T ( x ,  y,  z)l~=~, : T(x, y, z)l~=-h~. T (x, y ,  hi) - -  T (x, y ,  - -  hJ = d, -~z Oz 

Here d i s  a c o n s t a n t .  T h e  t e m p e r a t u r e  w i t h i n  the  g r a i n s  i s  e x p r e s s e d  by a s e r i e s  

(4) 

where 

Tpq = D (pq) r v X~ m eppq), 
�9 vp~ pq V ~ P q ~  

X~v = P~v(c~ P~v(u) = V f ( 2 v  + 1 ) ( v "  Ix)! (1 - -u i )  ~ d v+a 
2 (v + Ix)! 2 v v! duV+~ 

_ _  (u 2- 1) v 

(5) 

are orthonormal Legendre joining functions; D (pq) are undetermined constants. In Eq. (5) ~D 
the third subscript s = 0 has been omitted to simplify the notation. 

To obtain the double-periodic solution T~ of Eq. (I) we construct a corresponding system 
of external solutions of the Laplace equation, decreasing as IzI § ~. 

2. We will consider the harmonic function 

_ _ - -  
3 z 

where p1(cos 0pq) = 2 rpq 

summation indices p and q vary from-~o to ~. The function to is represented by a double 
absolutely convergent series, satisfies the condition of double periodicity in x and y re- 
quired, and is an odd function with respect tO z. Moreover, to + 0 as ]z I § co. Therefore, 
there must exist for Eq. (6) another representation: 

Z a ~  exp [-- 6m~z + i (o:mx q- [~y)], z > 0, 
t O  ~ rr l ,  r t  

- -  ~ a ~  exp [6~z  + i ( ~ x  + [3~y)l, z < 0, 
t r t , n  

where am = 2~m/a; Bn = 2~n/b; ~mn = /a~ + B~. 

By comparing Eqs. (6) and (7), we obtain an equation for determination of the unknown 

coefficients : 
a b 

ra q exp [-- ~ (amX -k ~nY)I dxdy,  

P, q O  0 

which can easily be transformed to the form 

abamn exp (--  8m~z) = z ( u2 q- v z + zi) a/~ . dudv (z > 0). 

To calculate the integrals on the right side of this equation we introduce new integration 

variables using the formulas 

u = p cos % v = p sin % dudv ,-7 pdpdcp. 

to = ~ ] pi (COS 0pq), (6) 

is an orthonormal Legendre polynomial of first order, and the 

Finally we have 

pdp, 

(7) 

2~:  oo 

abam~exp(--Sm.z)---- ~/F_~,. jC aq)" j f exp[-- ip6m~cos(qo--(_~q__z~_~ ] ran)] 

0 0 

Integration in Eq. 

6mn 
(8) is simple to perform for the case m = n = 0; the result has the form 

(8) 

212 



~b~oo = ~. For the remaining values of the indices m and n we expand the integrand in a 
series of Bessel functions: 

exp [ - -  i p 6 ~  cos (~ - -  em~)] = Z ( -  i)~ J~ (6m~9) exp [ik ({p - -  em~)]. 

This expression permits transformation of Eq. (8) to the form 

abam,~ exp (-- 6 ~ z )  -- I#ff~z ~ d0 (96m~) - ,9 (#  7 Z2-~ 3pap" (9) 
0 

The integral on the right side of Eq. (9) is the transform of a zero order Hankel function 
(i/z)exp(--dmnZ) []]. Considering this fact, we obtain the following expression for the co- 
efficients ~mn in Eq. (7): 

V 6 ~ ( m , ~ = o ,  +_~, ___2, ..). (lo) 
amr~ - -  ab 

Commencing from Eqs. (6), (7), (10) we construct some system of solutions of Eq~ (I) 
having the same properties of periodicity and decay as I z I § ~o as does to. For this purpose 
we make use of the following relationships of harmonic function theory: 

[ 1 1 ~ (0, ~) = D ~  p~ (cos O) ~+,X~ - ~  , 
fpq 

D,~ = ( - -  l) v--~ -I/V/- 
(i~) 

( v = l ,  2 . . . .  ; ~ = 0 ,  1 . . . . .  v - - l ) ,  

which follow from the results presented in [2]. Now, applying to Eq. (6) the differential 
operator D~, with co:nsideration of Eq. (11), we obtain the desired system 

t ~  = D~to = ~ X~ v (Opq, q)pq) (v = 1, 2, " ~ , ~  r;~+ . . . ,  

�9 ~t = O, ~ t ,  ~ 2  . . . .  _ (v -- 1)). ( t 2) 

Negative values of the index ~ are also included here, while t~,-~ = (--1)~-tv]a, since 
p]~(u) = (--1)Zp~(u), and the bar above a quantity denotes its complex conjugate. We find 
the representation of the functions tm~ by a double Fourier series from Eq. (7) with the aid 
of the operator D~: 

I X  ~ exp [ - -  6 ~ z  + i  (~z~x + ~ny) ] , z  > O, 

tv~ 
~m,n 

i(-- 1 ) v + ~ ]  ~Vm~ ex p [6m~z + i ( o ~ z  + 13~y)l, z < O, 
k /7"/, /'t 

v.__ i f  2 ( 2 v +  1) ~: 6rv~--l(~, __i~r~) ~ 
~ " -  v (~, + ~)t ( v - -  ~)! at, (13) 

~g V-6~ ~ = o ( ~  1 ~ o )  (~ 1,2 ,  �9 = a--b--' ~oo v ~ , ~ . . . . .  

,~ = o, + 1  . . . . . .  i ( v - -  0) .  

From_ the complex functions t~ we may generate real expressions, even in x and y, viz.: 

t~,2k + t~,2k = tv,2 k + t~,-2k, which will be used below. 

Equation (13), the solutions t~ of the Laplace equation, can satisfy boundary condi- 
tions (4) on the plane edges of the grainy layer. For fulfillment of the thermal contact 
conditions between layer and grains, Eq. (2), tmD must be transformed to a local spherical 
coordinate system. This can be done commencing from Eq. (12) and the addition theorem for 
external solutions of the Laplace equation in spherical coordinates [3] 

t 
i 

X~(O~q, ~ v q ) = Z ~ ,  ~ g ~ ( p ,  q)r'  X~(O, ~) ( r < a ,  b), (I~) 
v+ 1 vvt fW 
tpq 

t = O  s=--t 
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pv~=(__l),+~ [ 2 ( 2 v + l ) ( v + t + t x - - s ) I ( v + t - - ~ + s ) !  ]I/2 
[ ( 2 t §  1)(2v + 2t + 1)(v§ p~$(O), 

exp [ i (~ - - s  o ) ~pq] pa @ iqb 
?v~ (P' q) = i (v@t@l) ' exp (iep~ = --- (pZaZ+ qZbZ) l/2 " 

(p2aZ + qZbZ)2 

We then arrive at the following equation: 
t 

l 

t ~  ( r ,  O, r - rV + 1 - - - - - -  ~,~t - X t  

t~O s ~ - - t  

(1 5) 
p=O q = 0  

1 1 
r  r  r  e p q =  1 ( p , q > 0 ) .  

~s S ince  [1 + (--1)la-s]~3vt=~ 0 on ly  fo r  ~ ~ s and t + v even,  in  the  f i r s t  e q u a t i o n  of  Eq. (15) 
bo th  v and t as we l l  as ~ and s have i d e n t i c a l  p a r i t y .  

3. As follows from the formulation of the problem, the temperature field in the given 
grainy layer is an even function of the variables x and y, and the temperature distribution 
within all grains is identical, i.e., in Eq. (5) the indices pq of the undetermined constants 
D(Pq) may be omitted. In this case D~ =k+~ = 0, D~,~k = Dv,-=k. We now write solution (3) ~)~ 
in the chosen layer in the form 

V - - 1  t 

T = ?z -4- ~ ~ A2v-t, 2t~t2,,-,, 2~-~- ~ {Bran exp[(z - -  h~) 6ra.] q- C,~, exp [-- (z q- hz) 6ran] } exp [i (amx + [~,~y)], (16) 
v = l  ~ = - - v q -  1 m , n  

where the prime superscript on a summation denotes that it omits the term with indices m = 
n = 0. 

To satisfy condition (4) we transform Eq. 
expansions of Eq. (]3). 
and Cmn , obtaining 

(16) to the coordinates x, y, z, using the 
As a result, we obtain algebraic expressions which we solve for Bmn 

B r a ~  - -  

Cin/'t 

2]/-6n 
yc @ ab Al,o = d, 

- -  exp (-- h26mn) E Z A2v_I, 2ix ~2v-l, 2ix ' 
1 -- exp (-- CSm,~) ~m. 

v=l ~=--v:~ i 

v--I 

exp (-- hi6m~) E Z ~2V--1,2~. 
1 -- exp (~-- C6m,~) Azv-1, 2.u ~mn 

v = l  b t = - - v +  1 

(17) 

With consideration of Eq. (17), Eq. (]6) takes on the form 

V - - I  t 

T - = y z +  ~ ~ Aev_l,2~tzv_l,2~--2 Z ~m~sh(z6,n,~)exp[i(arax+ 
v = l  b t=- -vq-  1 m , n  

v--1 ~:2v-- 1,2~t 
+ 13.Y)], ~m~ = [exp (c6ran)- !] -x ~] A2._1,2~ �9 

v = l  / x = - - v +  1 

This representation does not 
the points of which Izl < c. 

The right side of Eq. ( 
eration of Eq. (15) and the 

exp 

(18) 

contain the quantities hl and h2 and is valid in any layer, for 

18) is transformed to spherical coordinates r, e, ~ with consid- 
following equation: 

~ X mn 
l 

[ _  6m~Z§ i (amX + [3~y)l = ~ - -  t~ r~X[ (0, ~), 
t ~ O  s = - - t  

+xran= I/T ' I ts 6ran exp (-- isemn) is 

-x m- V(2t + I) (t+ s)! (t-- s)! I (-- I)~i -s 
ts 

214 



which is obtained after expansion of the exponential on the left in a power series and use 
of the cor responding  i n t e g r a l  r e p r e s e n t a t i o n  of the Legendre j o i n i n g  f u n c t i o n s .  We then ob- 
tain 

1 / ~  - Z Z [ 1 , IX 2~ (O,q~), (19) T (r, O, ~) = yrX~ (0," ~) + ~ A~,_~,~, ~ -v a~t_i,~, r zt-i ~t-i 
t=l  s=- - t+ l  

V--1 m n  
A 2R,2S - -  2 "%~'+ X2t--a ,2,.~.~ (r < a,b). s : ~ g~_i~Z~zq2v--1,2L--I .ca 

v=l  b~=--V+ 1 m , n  

Satisfaction of the contact conditions (2) by Eqs. (19) and (5) leads to an infinite system 
of algebraic equations, which we write in the form 

__l pS-~a o / 3 ?R6~t_.l ~)o2s .,P2t-tn~2t_l,2,, R2 t A21_i,28 -6 2t_i,.s -6 = ( 2 0 )  

r%i~__ 1 ] 1 

1)R zt-z 2,_1,2~1~bv-1,21-1--v2v-l,2,-Ij = y 2t-I 2s 1 + - - - - 2 1  ; (21) 
v=l R=--v-}- 1 

The second group of equations (21) is a closed infinite system with unknowns A2t-~,2s (t = 
I, 2, ...; s = 0, 1, ..., t ~ 1), where Azt-1,-2s = A2t-~,2s. The first group of equations 
in Eq. (20) is an expression of the unknowns D~t-l,2s in terms of A2v-1,2~. 

In this manner, the undetermined constants in Eq. (18) must be found from the infinite 
algebraic system. Its properties are determined by the behavior of the quantities 2 m 2 s  , ~]2v-- 1,2/--11 

�9 2p~, 2s 
and /42v--I, 2t--11 as V, t § for 0~<F~<~--I , O<~s<~t--l. We have the following upper limits 
for these quantities: 

~.2s V f 4 v _  1 (2v + 2t--2)! [ ~/-~-- ~/'b-- ] ~ 
I~] 2~-~. 2t-,] < 18 41-- 1 (2v-- 1)!(21-- 1)! ~ + -b -747- ' 

2~,2s (2v -6 2t--  2)! [ / / -  4v --. 1 1 
u2v-1.  2t--1 ] <  K (2V - - 3 ) !  ( 2 t - -  1)! _ _  4 t - -  1 C 21+2v " 

where K is some constant independent of ~, t, ~ and s. Using these estimates and transform- 
ing in Eq. (21) to new unknowns z2t-1,as = (l/R2t+~)A2-1,2s, it is simple to show that the 
system obtained after the replacement belongs to the class of normal type systems, if a, b, 
c > 2R. Since satisfaction of these inequalities was presumed in the formulation of the 
problem (the grains do not contact each other), the possibility of obtaining a solution of 
system (21) by the reduction method has been proven. 

4. The results presented above are sufficient for determination of effective thermal 
conductivity coefficients of the grainy layer. The mean projections (over elementary cell 
volume of the medium) on the z axis of the temperature gradient ~T/3z and the thermal flux 
vector qz can be represented by inequalities 

; + / O T  \ aT dV dV, ado \ az / Oz az 
v M Vg 

(22) 
; ;OToo abc < q, ) ---- ~i OT dV q- ~2 dV, 

o--7 <bz 
V M V g 

where V M + V g =abc; Vg = (%/3)zR s. 

Using the Gauss-Ostrogradskii theorem~ the temperature field equations (5) and (]9), the 
first equations of Eqs. (4) and (17), the equations of the infinite system Eqs. (20), (2]) 
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at t = 1, s = 0, and the property of orthogonality of the spherical harmonics X~(8, ~), we 
transform Eq. (22) to 

OT 
abc< N = 7abc + 2 V'6aA,,o, - -abc  ( q: > = s (23) 

Oz / 
Having defined the effective thermal conductivity coefficient %ef as the ratio of-(qz> to 

/0T \ we obtain from Eq. (23) 
\ Oz / '  

1 
~ef = ~i ' (24) 

1 -[- 2 V6___Zg A ~  
abc 

where A (:) denotes the first unknown A1,o of infinite system (21) at y = I. 
1,o 

Thus, to find the effective thermal conductivity %ef it is necessary to have the solu- 
tion of system (21). This solution, as was shown in Sec. 3, can be foun~ to the required 
accuracy from a truncated system, the order of which depends on the values of the parameters 
a/R, b/R and c/R. If as a zeroth approximation we confine ourselves to one equation in 
system (21), then 

)q 1 

A~l,)o = 1/_____ Ra ~2 (25) 
�9 %i ( %i) Rao]oo__ oo " 1 + 2 - - ~ -  2 -+- 1 - -  )~2 YI:) 

Considering the notation used in Eq. (15) and system (21) ,  we write Eq. (24), with consider- 
ation of Eq. (25), in its final form 

Lef = ~'i - -  
,. 

1 -q- 3fco, ' 

~i I 
~2 4nR 3 

o h .... , f - - ,  ( 2 6 )  

1 + 2  ~,~--L+3( L2 )~' - -1) fob 3abc 

E c6m,~ 1 s Cvq 
% ---- exp ( c - ~ ) - -  1 ~-  

m , n  p ,q=O 

abc 
(ffa z -k- qZb~)Z/e 

As follows from these equations, the ratio of %ef to %1 depends not only on the grain 
concentration f and the ratio of the thermal conductivities of matrix %1 and grains %2, but 
also on the parameters a/c and b/c, since ~2 = ~2(a/c, b/c). The values of the quantity ~2 

are presented in Table I.* 

The first approximation of Eq. (26) can give satisfactory results only at small values 
of the quantities I~/%2 -- I I and f. In fact, at %~/%2 -- 1 = 0 the infinite system of Eq. 
(21) degenerates into a single equation A (I) = 0, and we obtain from Eq. (26) the trivial 
result Xef = %1 for arbitrary f. But if %~ = -- ] =/=0, then the unknown A~Z~ in Eq. (25) 
can differ slightly from its exact value only at f ~ v/6, i.e., when the mutual interaction 

*The calculations were performed by A. G. Artemenko, to whom the author expresses his grati- 

eude. 

TABLE I. Values of the Function a~= = a)=(a/c, b/c) 
a/c b 

c 0 , 6  0 , 8  1 ,0 1 , 2  1 ,4 1 , 6  1 ,8  2 , 0  

0,6 
0,8 
1,0 
1,2 
1,4 
1,6 
1,8 
2,0 

--I, 18 ,06' 
- 1  I,o2 

,00 
,00 Zl 
,00 
,00 -I ,00 

--1,06 
--0,87 
--0,78 
--0, 72 
--0,67 
--0,62 
--0,57 
--0,53 

--1,02 
--0,78 
--0,66 
--0,57 
--0,49 
'--0,42 
--0,34 
--0,27 

--1,00 
--0,72 
--0,57 
- - 0 , 4 6  
--0,36 
--0,27 
- - 0 , 1 8  
--0,09 

--1,00 
--0,67 
--0,49 
--0,36 
--0,25 
--0,14 
--0,03 

0,07 

--1,00 
--0,62 
--0,42 
--0,27 
--0,14 
--O,O1 

O,II 
0,23 

--1,00 
--0,57 
--0,34' 
" 0 , 1 8  
--0,03 

0,11 
0,25 
0,38 

--1,00 
--0,53 
--0,27 
--0,09 

0,07 
0,23 
O, 38 
0,54 
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of the grain temperature fields is insignificant. To establish the dependence of the accur- 
acy of Eq. (25) on the values of the parameters %z/%~ ~ I and f is difficult, so we will pre- 
sent a comparison of results calculated with Eq. (26) with data of other authors: 

Reference [4] [51 [61 [6] [7] [261 [41 

~ef/~i 2,94 2,15 4.63 2,53 2,88 2.90 3.32 

This  c o m p a r i s o n  i s  f o r  q u a r t z  t y p e  g r a i n y  m a t e r i a l  i n  w a t e r  w i t h  p a r a m e t e r s  ~i = 0 .63  W/m" 
deg,  ~2 = 8 .36 W/m-deg, and f = 0 .48  [ 4 ] ,  w i t h  the  b o t t o m  row showing e x p e r i m e n t a l  v a l u e s  
from [4]. Moreover, the first and second approximations from [6] and the first Rayleigh 
approximation from [7] were used. In the calculations with Eq. (26) it was assumed that 
a/c = b/c = I, i.e., ~2 = -~0.66. Thus, the first approximation of the theory proposed gives 
completely satisfactory results~ even for cases of significant difference between thermal 
conductivities of matrix and grain materials and relatively high grain concentrations f. 

To obtain a more exact value of %ef it is necessary to substitute in Eq. (24) a more 
exact value of the unknown A~I~ i.e., to retain a larger number of equations in system (2|). 
This would correspond to a st'icter satisfaction of contact conditions (2). We note, how- 
ever, that even the first approximation captures such a significant property of the thermal 
conductivity of grainy materials as its anisotropy. In fact, if in the results presented 
above we perform a cyclical interchange of the coordinates x, y, z and parameters a, b, c, 
we arrive at the formulas for the thermal conductivity coefficient$ ~n the x and y directions. 
Since ~2 changes quite significantly, in the general case ~(z)=/= ~Y)=/= ~(x) 

er ef et " 
In conclusion, we note that in the present study the thermal conductivity coefficient of 

the grainy medium was determined by strict solution of the boundary problem of Eq~1)(I), (2). 
Also of great importance is the proof of the possibility of finding the unknown Af, 0 from 

system (21) to the required degree 9f accuracy. The proposed method is in all probability 
the simplest possible one using a strict solution of the corresponding boundary problem, 
since it employs series. Only double series were used, while in Rayleigh's approximate 
approach and that of other authors refining his results, triple series were used [7]. 
Another approach to determination of effective thermal conductivity was proposed in [7], in 
which the problem is reduced to solution of an infinite system of algebraic equations. We 
also note that the results presented in the first part of this study can be used for solu- 
tion of certain thermal conductivity problems for a grainy layer or a rectangular parallele- 
piped containing a spherical inclusion. Moreover, this method permits generalization to the 
case of a grainy material with arbitrary nonorthogonal inclusion lattice. 

NOTATION 

%, thermal conductivity; R, grain radius; a, b, c, lattice periods; x, y, z, Cartesian 
coordinates; r, ~,~ , spherical coordinates; T, temperature. 
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